Organização Panamericana de Saúde 2 Abril 2007

"Procedimento utilizado pela USEPA para estabilizar os valores orientadores de prevenção e intervenção"

David S. Wilson, P.E., P.G. Environmental Resources Management Rio de Janeiro, Brasil

Panamerican Health Organization April 2, 2007

"USEPA Procedures for Establishing Environmental Screening and Cleanup Levels"

David S. Wilson, P.E., P.G. Environmental Resources Management Rio de Janeiro, Brazil

PRESENTATION CONTENT

- **1. BACKGROUND**
- 2. SITE REMEDIATION PROCESS
- **3. INTERVENTION VALUE** DEVELOPMENT
 - 1. PURPOSE
 - 2. PROGRAMS
- **4. INPUT PARAMETERS**
- **5. PROCEDURE SUMMARY**
- **6. EXAMPLE PROJECTS**

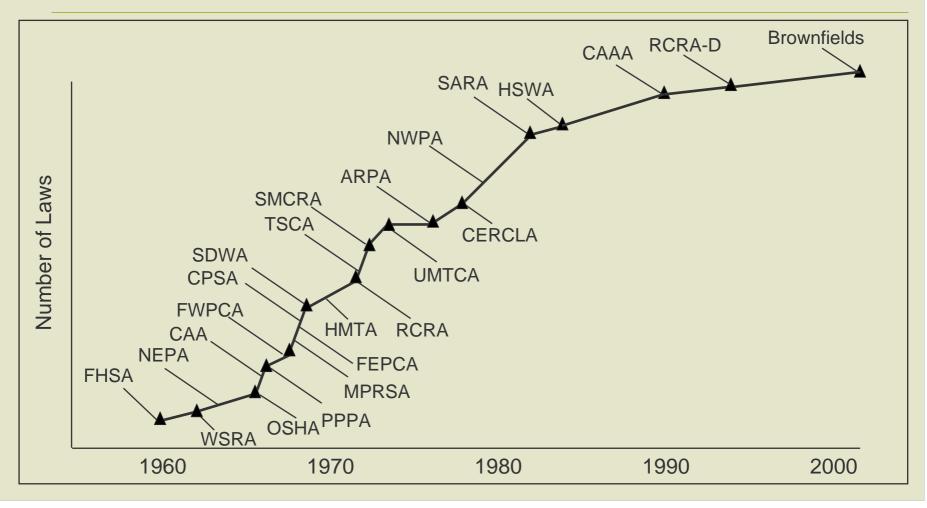
Page 3

February 2003

BACKGROUND

Major U.S. Contaminated Sites:

- Cuyahoga River Fire 1969
- Love Canal 1978
- Times Beach 1980



Page 4

February 2003

DEVELOPMENT OF MAJOR U.S. ENVIRONMENTAL REGULATIONS

GENERAL SITE REMEDIATION PROCESS

SITE INVESTIGATION

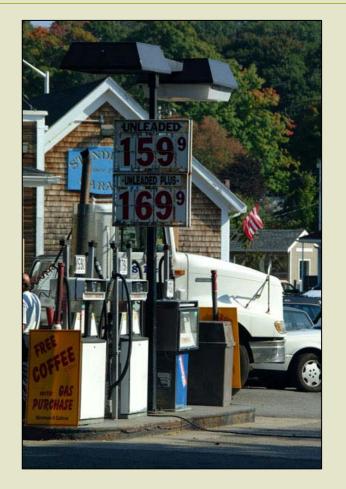
- Identification
- Delineation

RISK CHARACTERIZATION

- Human Health
- Environmental Receptors

REMEDIAL ACTION

- Remedial Action Objectives
- Remedial Design
- Remedy Implementation
- Operation & Management



Page (

DEVELOPMENT OF "INTERVENTION" VALUES AND CLEANUP GOALS IN U.S.

- Initial sites managed through formal **Risk-Assessment under Superfund**
- Not all sites are Superfund Sites what about small sites?
- Agencies needed simple process to screen and prioritize
- Owners wanted simple cleanup goals without formal risk assessment
- Values/goals specific for chemicals, industries, land uses, exposures, etc.
- Values are not mandated by law; programs continue to offer flexibility

Page

MANY U.S. INTERVENTION VALUE AND REMEDIATION GOAL PROGRAMS

Federal Cleanup Levels (www.cleanuplevels.com)

USEPA Soil Screening Guidance (SSG) - This is a great source for soil screening levels (<u>SSLs</u>), information on calculating site cleanup levels, and general guidelines for the use of levels at sites. <u>GO</u>

USEPA Region 9 Preliminary Removal Goals (PRGs) - This source, called R9 <u>PRGs</u> for short, not only gives you lots of soil cleanup values in table form but also has detailed technical information on calculating site-specific goals <u>GO</u>

USEPA Region 6 Medium-Specific Screening Levels (MSLs) - According to Region 6, these are very general and should be used as screening levels only. Tables have toxicity info, physical parameters and soil screening levels. <u>GO</u>

USEPA Region 3 Risk-Based Concentrations (RBCs) - This site presents the R3 Risk-Based Concentrations (<u>RBCs</u>) tables along with guidance on Monte Carlo, groundwater exposure point concentrations and assessing dermal exposure to and risk from soils. <u>GO</u>.

USEPA Risk Assessment Guidance For Superfund: Part B, Preliminary Removal Goals (RAGS, Part B) - <u>RAGS</u> Part B is the holy grail of cleanup levels. Simple document that gives the general risk (intake) equations used in a quantitative risk assessment and the general equations for cleanup goals or <u>PRGs GO</u>

Federal Drinking Water Standards and Health Advisories - This has the national primary (<u>MCLs</u> and <u>MCLGs</u>) and the secondary drinking water standards. A must-have for sites with possibly contaminated groundwater. <u>GO</u>

MTBE Groundwater Clean-up Levels for LUST Sites - This is a really cool map of the states on EPA's website that shows the current and proposed cleanup levels for <u>MTBE</u> in each of the states. <u>GO</u>

February 2003

SEVERAL STATE SCREENING AND REMEDIATION GOAL PROGRAMS

State-Specific Cleanup Levels (www.cleanuplevels.com)

Tennessee: Cleanup Criteria for Petroleum Contaminated Sites - TN's Division of Solid Waste Management has levels for benzene and <u>TPH</u> in the document at the end of the GO link. For state site remediations, the division uses EPA Region 9 <u>PRGs</u> for screening purposes. <u>GO</u>

Texas: State Cleanup Levels - This site is from PEL Labs (no, they have not paid us but we will take cash if they feel generous) and calculates cleanup levels depending on media, source area and and land use. Cool toy to play with. <u>GO</u>

Utah: Estimating Numeric Cleanup Levels for Petroleum-Contaminated Soil at Underground Storage Tank Release Sites - This document covers Utah's guidelines for Recommended Soil Cleanup Levels (<u>RCLs</u>) related to Underground Storage Tanks. Presents levels for <u>TPH</u> and <u>BTEX</u>. Numbers are for gasoline constituents and a little hard to find: go to the end of the document to Tables 10 - 12. <u>GO</u>

Virginia: Voluntary Remediation Program Risk Assessment Guidance - Virginia's Department of Environmental Quality has a tiered procedure similar to other states. They have Excel tables with information on toxicity, exposure factors, etc. to use in your calculations. They also have tables for soil levels (residential - <u>vrp25.xls</u>, industrial - <u>vrp29.xls</u>), groundwater values, and some surface water info. For the list of available tables and direct links: <u>GO</u>.

Washington: RAIS Federal Guidelines Retrieval System - This search engine brought to us on RAIS's web pages presents a service to readers, letting them search for many different kinds of goals for the waters of Washington. <u>GO</u>

February 2003

USEPA SOIL SCREENING LEVELS (2004)

norganice				Migration to	ground wate
-		Ingestion	Inhalation fugitive particulate	20 DAF	1 DAF
CAS No.	Compound	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
7440-38-0	Antimony	31 b	_*	5	0.3
7440-38-2	Arsenic	0.4	760 *	29	11
7440-39-3	Barium	5,500 ^b	6.9E+05 b	1,600	82
7440-41-7	Beryllum	0.1 *	1,300 *	63 '	3
7440-43-9	Cadmium	78 ^{ban}	1,800 *	8 '	0.4
7440-47-3	Chromium (lotal)	390 ^b	270 *	38 '	2
16065-83-1	Chronium (III)	78,000 ^b	_ *	_ 9	_*
18540-29-9	Chromium (VI)	390 ^b	270 *	38 '	2
57 12 5	Cyanide (amonable)	1,600 *	-*	40	2
7439-92-1	Lead	400 ^k	_ ^k	_*	_*
7440-02-0	Nickel	1,600	13,000 *	130 1	7
7782-49-2	Selenium	390 ^b	_ *	5 '	0.3
7440-22-4	Silver	390 ^b	- *	34 ^{b,i}	2 ^{b,i}
7440-28-0	Thallum	- "	-*	0.7	0.04
7440-82-2	Vanadium	550 ^b	-*	6,000 b	300 ^b
7440-86-6	Zinc	23,000 b	_ *	12,000 ^{b/i}	620 ^{b,i}

Page 10

February 2003

USEPA REGION 9 - PRGs (2004)

Key : SFo, i=Cancer Slope Factor oral, inhalation RfDo, i=Reference Dose oral, inhalation i=IRIS p=PPRTV c=California EPA n=NCEA h=HEAST x=Withdrawn r=Route-extrapolation ca=Cancer PRG nc= Noncancer PRG ca* (where: nc PRG < 100X ca PRG) ca* (where nc PRG < 10X ca PRG) +++=Non-Standard Method Applied (See User's Guide) sate=Soil Saturation (See User's Guide) max=Ceiling limit (See User's Guide) DAF=Dilution Attenuation Factor (See User's Guide) CAS=Chemical Abstract Services

	тохісіт	Y VALUE	<u>s</u>					CONTAMINANT	PREL	IMIN/			ION GOALS				EENING LEVE
						skin						ntact B	Exposure Pathw	-		9	o Ground Water
SFo 1/(mg/kg-c	RfDo (mg/kg-d)	SFi 1/(mg/k	RfD (ma	li /kg-d)		abs. sails	CAS No.		Residenti Soil (mg/k		Industrial Soil (mg/kg	-)	Ambient Air (ug/m^3)	Tap Water (ug/l)		DAF 20 (mg/kg)	DAF 1 (mg/kg)
n(ingikg-c	i) (ingikg-a)	n(mgn	.g-d) (mg	ikg-aj		7010				(9)	Soli (ingiki	9)		(agii)		(inging)	(inging)
8.7E-03	i 4.0E-03	i 8.7E-03	r 4.0E	-03	r	0.1	30560-19-1	Acephate	5.6E+01	ca**	2.0E+02	ca*	7.7E-01 ca [*]	7.7E+00	ca*		
		7.7E-03	i 2.6E	-03	i y		75-07-0	Acetaldehvde	1.1E+01	ca**		ca**			са		
	2.0E-02	i	2.0E	-02	r	0.1	34256-82-1	Acetochlor	1.2E+03	nc	1.2E+04		7.3E+01 nc	7.3E+02	nc		
	3.0E-01	i	9.0E	-01	r y		67-64-1	Acetone	1.4E+04	nc	5.4E+04	nc	3.3E+03 nc	5.5E+03	nc 1	.6E+01	8.0E-01
	8.0E-04	h	8.0E	-04	r	0.1	75-86-5	Acetone cyanohydrin	4.9E+01	nc	4.9E+02	пс	2.9E+00 nc	2.9E+01	nc		
	1.7E-02	r	1.7E-	02	i y		75-05-8	Acetonitrile	4.2E+02	nc	1.8E+03	nc	6.2E+01 nc	1.0E+02	nc		
	5.0E-04	i	5.7E-	-06	i y		107-02-8	Acrolein	1.0E-01	nc	3.4E-01	nc	2.1E-02 nc	4.2E-02	nc		
4.5E+00	i 2.0E-04	i 4.5E+00	i 2.0E	-04	r	0.1	79-06-1	Acrylamide	1.1E-01	ca	3.8E-01	са	1.5E-03 ca	1.5E-02	са		
	5.0E-01	i	2.9E	-04	i	0.1	79-10-7	Acrylic acid	2.9E+04	nc	1.0E+05	max	1.0E+00 nc	1.8E+04	nc		
5.4E-01	i 1.0E-03	h 2.4E-01	i 5.7E-	-04	i y		107-13-1	Acrylonitrile	2.1E-01	ca*	4.9E-01	ca*	2.8E-02 ca	3.9E-02	ca*		
1.0E+00	r	1.0E+00	c		у			"CAL-Modified PRG"	5.5E-02	са	1.2E-01	са	6.7E-03 ca	1.1E-02	са		
8.1E-02	h 1.0E-02	i 8.0E-02	r 1.0E-	-02	r	0.1	15972-60-8	Alachlor	6.0E+00	са	2.1E+01	са	8.4E-02 ca	8.4E-01	са		
	1.5E-01	i	1.5E-	01	r	0.1	1596-84-5	Alar	9.2E+03	nc	9.2E+04	nc	5.5E+02 nc	5.5E+03	nc		
	1.0E-03	i	1.0E-	-03	r	0.1	116-06-3	Aldicarb	6.1E+01	nc	6.2E+02	nc	3.7E+00 nc	3.6E+01	nc		
	1.0E-03	i	1.0E-	-03	r	0.1	1646-88-4	Aldicarb sulfone	6.1E+01	nc	6.2E+02	nc	3.7E+00 nc	3.6E+01	nc		
1.7E+01	i 3.0E-05	i 1.7E+01	i 3.0E	-05	r	0.1	309-00-2	Aldrin	2.9E-02	ca*	1.0E-01	са	3.9E-04 ca	4.0E-03	ca ś	.0E-01	2.0E-02
	2.5E-01	i	2.5E	-01	r	0.1	74223-64-6	Ally	1.5E+04	nc	1.0E+05	max	9.1E+02 nc	9.1E+03	nc		
	5.0E-03	i	5.0E	-03	r	0.1	107-18-6	Allyl alcohol	3.1E+02	nc	3.1E+03	nc	1.8E+01 nc	1.8E+02	nc		
	2.3E-04	r	2.9E	-04	i	0.1	107-05-1	Allyl chloride	1.7E+01	nc	1.8E+02	nc	1.0E+00 nc	1.0E+01	nc		
	1.0E+00	Р	1.4E-	-03	Р		7429-90-5	Aluminum	7.6E+04	nc	1.0E+05	max	5.1E+00 nc	3.6E+04	nc		
	4.0E-04	i					20859-73-8	Aluminum phosphide	3.1E+01	nc	4.1E+02	nc		1.5E+01	nc		
	3.0E-04	i	3.0E	-04	r	0.1	67485-29-4	Amdro	1.8E+01	nc	1.8E+02	nc	1.1E+00 nc	1.1E+01	nc		
	3.0E-03	i	9.0E	-03	r	0.1	834-12-8	Ametryn	5.5E+02	nc	5.5E+03	nc	3.3E+01 nc	3.3E+02	nc		
	2.0E-04	n	2.0E	-04	r	0.1	1321-12-6	Aminodinitrotoluene	1.2E+01	nc	1.2E+02	nc	7.3E-01 nc	7.3E+00	nc		
	7.0E-02	h	7.0E	-02	r	0.1	591-27-5	m-Aminophenol	4.3E+03	nc	4.3E+04	nc	2.6E+02 nc	2.6E+03	nc		
	2.0E-05	h	2.0E	-05	r	0.1	504-24-5	4-Aminopyridine	1.2E+00	nc	1.2E+01	nc	7.3E-02 nc	7.3E-01	nc		
	2.5E-03	i	2.5E	-03	r	0.1	33089-61-1	Amitraz	1.5E+02	nc	1.5E+03	nc	9.1E+00 nc	9.1E+01	nc		
NA PH	ysChem 🔏 S	Soile / Air	H20 \ D	ос т <i>и</i>		200	4			1 T							

U.S. EPA. 2004. Preliminary Remediation Goals Table, 2004. Região 9

On-line:http://www.epa.gov/Region9/waste/sfund/prg/files/04prgtable.pdf

Delivering sustainable solutions in a more competitive world

Page 11 February 2003

Key U.S. Programs – EPA Region 9 Preliminary Remediation Goals (PRGs)

Preliminary Remediation Goals (PRGs) are tools for evaluating and cleaning up contaminated sites. They are risk-based concentrations that are intended to assist risk assessors and others in **initial screening-level evaluations** of environmental measurements. The PRGs contained in the Region 9 PRG Table are generic; they are **calculated without site specific information**. However, they may be re-calculated using site specific data.

PRGs should be viewed as Agency guidelines, not legally enforceable standards. They are used for site "screening" and as initial cleanup goals if applicable. PRGs are not *de facto* cleanup standards and should not be applied as such. However, they are helpful in providing long-term targets to use during the analysis of different remedial alternatives. By developing PRGs early in the decision-making process, design staff may be able to streamline the consideration of remedial alternatives.

February 2003

USEPA REGION 3 - RBCs (2006)

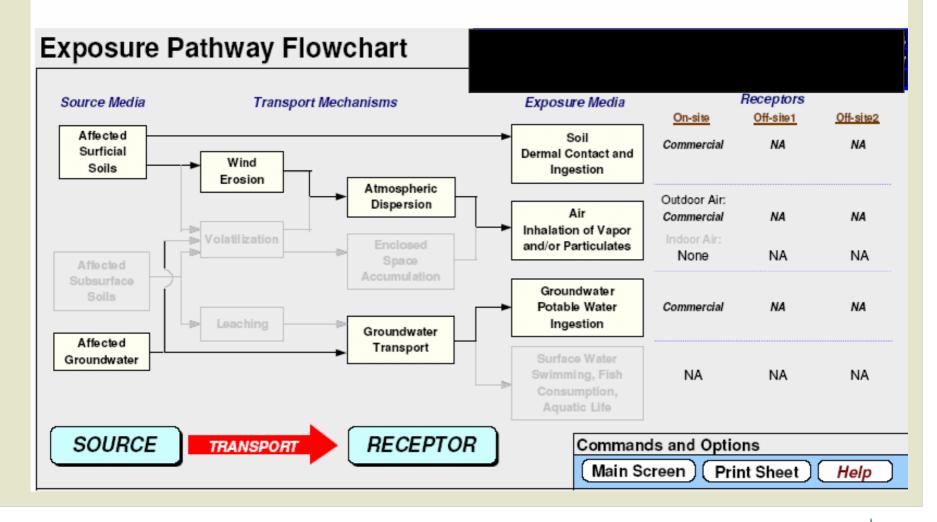
						Г								
WIGHT 1+1815 H+HEAST A+HEAST Alleman M+ATSOR M						Г	Bers C+Centropen				IBCs 11+ See Allestide PIBCs			
 EPANOEA provisional value: O + other: P + EPA provisional pre- 	CONTRACTORING ACAPS OF THE	Certificanti via musa	peac made at action	·	· · · ·	⊢	Тар	Ambient	based concentrations	Sol			on III SSLe	alar migration
		RfDo	CSFo	ero i	can.	L	water	air	00	industrial	Residential	04/		ator menoen AF 20
hemical	CAS	mphpid	1/mg/kg/d	mg/kg/d	lingkald	DC.	- p1	eg/m3	marka	noko	naka	02		akg
DETALDENYDE	750	10		2.57E-03 I	7.76-03		1.6E+00 C	0.1E-01 C					3.05-04	7.75-03 0
DETOCHLOR	342550					L	7.3E+02 N	7.3E+01 N	2.7E+01 N	2:0E+04 N	1.6E+03 N			
DETONE	676					4	5.5E+03 N	3.3E+03 N	1.2E+03 N	9.3E+05 N	7.0E+04 N		1.1E+00	2.20+01 M
DETONITRILE	750			1.76-021	1		1.2E+02 N	6.2E+01 N					2.96-02	5.0E-01 N
DETOPHENONE	909				1	1	6.1E+02 N	3.7E+02 N	1.4E+02 N	1.0E+05 N	7.8E+03 N		1.66-01	3.25=00 5
CROLEN	1070			5,705-061		4	4.2E-02 N	2.1E-02 N	6.8C-01 N	5.1E+02 N	3.9E+01 N		1.05-05	2.0E-04 N
DRYLAMIDE	790		4.502-001		4.500+001	L	1.5E-02 C	1.4E-03 C	7.06-04 C	6.4E-01 C	1.4E-01 C		3.76-06	7.4E-05 C
DRYLONITRILE LACHLOR	1071: 199729		5.40E-01 I 0.00E-02 H	5,705-041	2.406-011	1	3.7E-02 C 8.4E-01 C	2.6E-02 C 7.8E-02 C	5.85-03 C 3.95-02 C	5.3E+00 C 3.6E+01 C	1.2E+00 C 0.0E+00 C		7.45-06	1.5E-04 0
LACHEOR			0.000-02 H			⊢		5.5E+02 N		1.5E+05 N		-	3.56-04	7.05-05 0
LAR LOICARD	15950					L	5.5E+03 N 3.7E+01 N	5.5E+02 N 3.7E+00 N	2.0E+02 N 1.4E+00 N	1.5E+05 N 1.0E+03 N	1.2E+04 N 7.6E+01 N		1.05-02	2.1E-01 N
LORDARD SULFONE	15450						3.7E+01 N	3.7E+00 N	1.4E+00 N	1.0E+03 N	7.0E+01 N		7.55-03	1.5E-01 N
LORN	10400		1.705+011		1.700+011	⊢	3.9E-03 C	3.7E-04 C	1.90-04 0	1.76-01 0	3.00-02.0	+-	3.05-04	7.75-03 0
WINDOWITROTOLUENES		2.00E-00 E	1.7467411		1.700-0011	L	7.3E+01 N	7.3E+00 N	2.7E+00 N	2.0E+03 N	1.6E+02 N		2.0004	1.12.001
MICHIA	76544			2.045-021			2.1E+02 N	1.0E+02 N						
NUNE	625		5,705-031	2.905-041		T	1.2E+01 C	1.1E+00 N	556-01 C	5.0E+02 C	1.1E+02.0 I		6.05-03	1.45-01 0
NTIMONY	74403					L	1.5E+01 N	1.5E+00 N	5.4E-01 N	4.1E+02 N	3.1E+01 N		6.65-01	1.50+01 8
TIMONY TRICKIDE	13099			5.705-051			1.5E+01 N	2.1E-01 N	5.4E-01 N	4.1E+02 N	3.1E+01 N			
RSENIC	74403	3.005-041	1.5054001		1.51E+01 I	Г	4.5E-02 C	4.1E-04 C	2.1E-03 C	1.9E+00 C	4.3E-01 C		1.36-03	2.65-02.0
RSINE	77644			1.405-051			1.0E-01 N	5.1E-02 N						
SOURE	765701	0.002-001					3.3E+02 N	3.3E+01 N	1.2E+01 N	9.3E+03 N	7.0E+02 N			
TRAZINE	19123	iii) 3.50E-02 I	2.20E-01 H			г	3.0E-01 C	2.0E-02 C	1.4E-02 C	1.3E+01 C	2:9E+00 C		4.45-04	0.02-03 0
ARIUM	74403	2.005-011		1.40E-04 A			7.3E+03 N	5.1E-01 N	2.7E+02 N	2.0E+05 N	1.6E+04 N		3.06+02	6.00=03 N
AVGON	1142	4.005-001					1.5E+02 N	1.5E+01 N	5.4E+00 N	4.1E+03 N	3.1E+02 N			
AYTHROID	603593	2.505-021				Г	9.1E+02 N	9.1E+01 N	3.4E+01 N	2.6E+04 N	2:0E+03 N			
ENTAZION	250570						1.1E+03 N	1.1E+02 N	4.1E+01 N	3.1E+04 N	2.3E+03 N			
INZALDENYDE	1005					⊢	3.7E+03 N	3.7E+02 N	1.4E+02 N	1.0E+05 N	7.0E+03 N			
ENZENE	714		5.55-021	0.65-00.1	2.76-021	1	3.4E-01 C	2.3E-01 C	5.7E-02 C	5.3E+01 C	1.2E+01 C		9.55-65	1.95-03 0
ENZENETHIOL	1009						6.1E-02 N	3.7E-02 N	1.4E-02 N	1.0E+01 N	7.0E-01 N			
DENZIONE	m 920		2.305-021		2.306+021	⊢	1.0E-04 C	1.0E-05 C	1.4E-05 C	1.2E-02 C	7.0E-04 C			
ENZOR ACID	850						1.5E+05 N	1.5E+04 N	5.4E+03 N	4.1E+06 N	3.1E+05 N			
ENZYL ALCOHOL	1005						1.0E+04 N	1.0E+03 N	6.8E+02 N	5.1E+05 N	3.9E+04 N		7.3E+00	1.50=02 N
ENZYL CHLORIDE	1004		0.171	5.75-061	0.400+001	4	6.2E-02 C 7.3E+01 N	3.7E-02 C 7.5E-04 C	1.9E-02 C 2.7E+00 N	1.7E+01 C 2.0E+03 N	3.8E+00 C 1.6E+02 N	-	1.95-05	3.7E-04 C 1.2E-03 N
PRENVL	74404			5./E-051	0.4004001		3.0E+02 N	1.0E+02 N	0.0E+01 N	5.1E+04 N	3.90+03 N		4.00+00	9.60-01 N
IS 2-CHLOROETHYLJETHER	1114		1.105-001		1.100+001	1	8.6E-03 C	5.7E-03 C	2.96-03.0	2.65+00 0	5.0E-01 C		2.25-06	4.45-05 0
S2-CHLOROISOPROPYLIETHER	1116		7.00E-02 H		3.50E-02 H	-	2.6E-01 C	1.0E-01 C	456-02 C	4.1E+01 C	9.1E+00 C	+-	0.45-05	1.75-03 0
SYCHLOROMETHYLVETHER	5420		2,205+021		2.200+021		4.8E-05 C	2.0E-05 C	14E-05 C	1.36-02.0	2.90-03.0		9.75-09	1.95-07 0
SO-ETHYLHEXYL PHTHALATE	1170		1.405-021		2.2007021	1	4.0E+00 C	4.5E-01 C	236-01 C	2.00+02.0	4.5E+01 C		1.40+02	2.90+03 0
DRON	74434		1.7645744	5.70E-03 H		t	7.3E+03 N	2.1E+01 N	2.7E+02.N	2.0E+05 N	1.5E+04 N		1.46.494	2.96-23 0
RONODICHLOROMETHANE	752		6.205-021	2.70E-02 H			1.7E-01 C	1.0E-01 C	5.1E-02 C	4.5E+01 C	1.0E+01 C		5.45-05	1.10-03 0
LONGETHENE	5909			0.65-041	1.10E-01 H		1.1E-01 C	5.7E-02 C					5.46-05	1.10-03 0
OMOFORM	752		7.905-031		3.906-031	t	0.5E+00 C	1.6E+00 C	4.00-01 C	3.65+02.0	0.1E+01 C		3.36-03	6.75-02.0
CONCINETRANE	740			1.405-001			0.5E+00 N	5.1E+00 N	1.9E+00 N	1.4E+03 N	1.1E+02 N		2.15-03	4.1E-02 N
IOMOPHOS	21049	5.00E-03 H					1.0E+02 N	1.0E+01 N	6.0E+00 N	5.1E+03 N	3.9E+02 N			
SEUTADIENE	1059	0		5.7E-04 I	1.006-011		1.3E-01 C	6.3E-02 C					7.05-05	1.45-03 0
BUTANOL.	719	1.005-011				1	3.7E+03 N	3.7E+02 N	1.4E+02 N	1.0E+05 N	7.8E+03 N		7.05-01	1.60+01 N
JTYLBENZYLPHTHALATE	859	2.005-011					7.3E+03 N	7.3E+02 N	2.7E+02 N	2:0E+05 N	1.6E+04 N		0.46+02	1.70+04 N
ACMIUN-WATER	74434	5.00E-04 I		5.7E-05 E	6.306+001	ſ	1.0E+01 N	9.9E-04 C	6.0C-01 N	5.1E+02 N	3.SE+01 N		1.4E+00	2.70+01 N
AGMIUM-FOOD	74404	1.002-031		5.7E-05 E	6.306+001	1	3.7E+01 N	9.9E-04 C	1.4E+00 N	1.0E+03 N	7.0E+01 N		2.7E+00	5.5E+01 N
APROLACTAM	1059	5.005-011				L	1.0E+04 N	1.0E+03 N	6.0E+02 N	5.1E+05 N	3.9E+04 N			
ARBARYL	652	2 1.00E-01 I				T	3.7E+03 N	3.7E+02 N	1.4E+02 N	1.0E+05 N	7.8E+03 N		1.50+00	3.00=01 N
ARBON DISULFIDE	751			2.005-011	1		1.0E+03 N	7.3E+02 N	1.4E+02 N	1.0E+05 N	7.8E+03 N		9.55-01	1.90+01 N
ARROW TETRACIN ORIGE	542	7.005-041	1.305-011	5.00E-02 M	5.305-021	•	1.65.01.0	1.35-01.0	245-02.0	2.35401.0	4 95+00 0	1	1.15-04	215.03.0

Page 13

February 2003

Key U.S. Programs – EPA Region 3 Risk-Based Concentrations (RBCs)

The Region III toxicologists use RBCs to screen sites not yet on the NPL, respond rapidly to citizen inquiries, and spot-check formal baseline risk assessments. **The primary use of RBCs is for chemical screening during baseline risk assessment**.... The exposure equations come from EPA's *Risk Assessment Guidance for Superfund* (RAGS), while the exposure factors are those recommended in RAGS or supplemental guidance from the Superfund program.... Simply put, RBCs are like risk assessments run in reverse. For a single contaminant in a single medium, under standard default exposure assumptions, the RBC corresponds to the target risk or hazard quotient.


To summarize, the **Table should generally not be used to set cleanup or no-action levels at CERCLA sites or RCRA Corrective Action sites**, to substitute for EPA guidance for preparing baseline risk assessments, or to determine if a waste is hazardous under RCRA.

February 2003

RBCA Tool Kit – Underground Storage Tanks

RBCA Tool Kit for Chemical Releases, Version 1.3b

STATE PROGRAMS – UTAH LUST ISLs

TIER 18	CREENING LEVELS AND	CRITERIA	INITIAL SCREENING	G LEVELS (ISL)	
Tier 1 Screening Leve conditions are met:	els (SL) are applicable only	when the following site			
measured concentratio Screening Levels but le 2. No water wells or	ty boundaries, or utility lines w n of any contaminant that is ss than or equal to the Tier I S surface water within 500 feet ntaminant that is greater than to o the Tier I SLs.	greater than the Initial Ls AND, of the highest measured			
CONSTITUENT	Tier 1 SL GROUNDWATER (mg/L)	Tier 1 SL SOIL (mg/kg)	ISL GROUNDWATER (mg/L)	ISL SOIL (mg/kg)	
Benzene	0.3	0.9	0.005	0.2	
Toluene	3	25	1	9	
Ethylbenzene	4	23	0.7	5	
Xylenes	10	142	10	142	
Naphthalene	0.7	51	0.7	51	
Methyl t-butyl ether (MTBE)	0.2	0.3	0.2	0.3	
TPH-Gasoline	10	1500	1	150	
TPH-Diesel	10	5000	1	500	
Oil and Grease (TRPH)	10	10000	10	1000	

SERVICE COMPANY OFFERS COMPENDIUM OF FEDERAL SCREENING & CLEANUP VALUES

1	CleanupLevels	.com								
4 M	Federal Screening		RESIDEN	TIAL SOIL		INDUSTRIAL SOIL				
4	Chemical	CAS No	Region 3 PRGs	Region 6 MSLs	Region 9 PRGs	Soil Screening Guidance	Region 3 PRGs	Region 6 Indoor Worker	Region 6 Outdoor Worker	Region 9 PRGs
5			marka	marka	mafka	marka	marka	mafka	marka	matka
6	Linked Publ	ication Date	Apr-04	Nov-03	Oct-02	Jun-96	Apr-04	Nov-03	Nov-03	Oct-02
7	Acesapthese	30560-19-1	4.7E+03	3.7E+03	3.7E+03	4.7E+03	6.1E+04	3.8E+04	3.3E+04	2.9E+04
8	Acephate	30560-19-1			5.6E+01					2.0E+02
9	Acetaldebyde	75-07-0		1.1E+01	1.1E+01			2.3E+01	2.6E+01	2.3E+01
0	Acetochlor	34256-82-1	1.6E+03	1.2E+03	1.2E+03		2.0E+04	4.1E+04	1.4E+04	1.2E+04
1	Acetone (2-Propanone)	67-64-1	7.0E+04	7.0E+04	1.6E+03	7.8E+03	9.2E+05	1.0E+05	1.0E+05	6.0E+03
2	Acetone cyanohydrin	75-86-5			4.9E+01					4.9E+02
з	Acetonitrile	75-05-8		6.2E+02	4.2E+02			2.0E+03	2.3E+03	1.8E+03
4	Acetophenone	98-86-2	7.8E+03	1.7E+03			1.0E+05	1.7E+03	1.7E+03	
5	Acifluorfen	50594-66-6								
6	Acrolein	107-02-8	3.9E+01	1.0E-01	1.0E-01		5.1E+02	3.4E-01	3.7E-01	3.4E-01
7	Acrylamide	79-06-1	1.4E-01	1.1E-01	1.1E-01		6.4E-01	1.3E+00	4.2E-01	3.8E-01
*	Acrylic acid	79-10-7		2.9E+04	2.9E+04			1.0E+05	1.0E+05	1.0E+05
9	Acrylonitrile	107-13-1	1.2E+00	2.1E-01	2.1E-01		5.3E+00	5.2E-01	5.5E-01	4.9E-01
:0	Alachior	15972-60-8	8.0E+00	6.0E+00	6.0E+00		3.6E+01	7.1E+01	2.4E+01	2.1E+01
:1	Alar	1596-84-5	1.2E+04	9.2E+03	9.2E+03		1.5E+05	1.0E+05	1.0E+05	9.2E+04
:2	Aldicarb	116-06-3	7.8E+01	6.1E+01	6.1E+01		1.0E+03	2.0E+03	6.8E+02	6.2E+02
:3	Aldicarb sulfone	1646-88-4	7.8E+01	6.1E+01	6.1E+01		1.0E+03	2.0E+03	6.8E+02	6.2E+02
:4	Aldria	309-00-2	3.8E-02	2.9E-02	2.9E-02	4.0E-02	1.7E-01	3.4E-01	1.1E-01	1.0E-01
:5	Ally	5585-64-8			1.5E+04					1.0E+05
	()) Levels /									

D

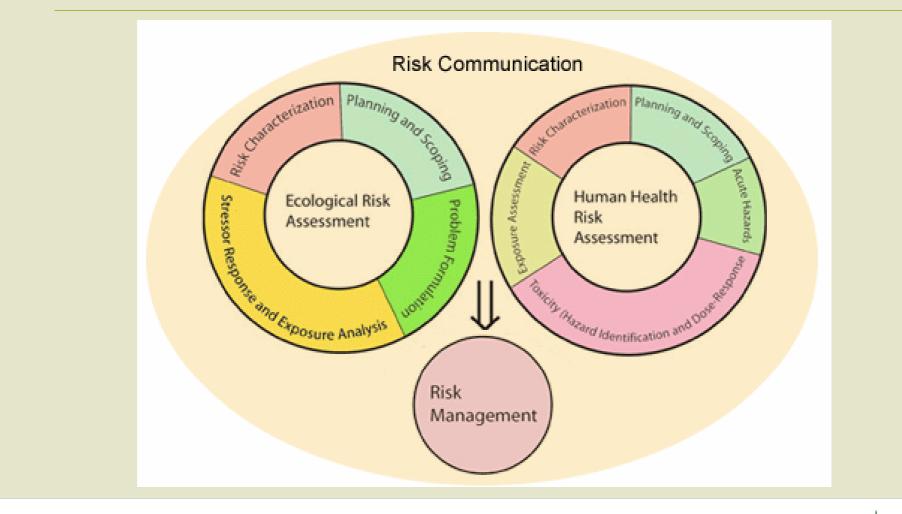
\$22 for the Excel File

We can accept checks, money orders and Paypal. Your purchase will help us pay for the bandwidth of this site, hosting costs and maybe a pizza for us grunts working on state values.

Page 17 February 2003

SUMMARY OF FEDERAL SCREENING AND CLEANUP VALUES FOR ARSENIC IN SOIL

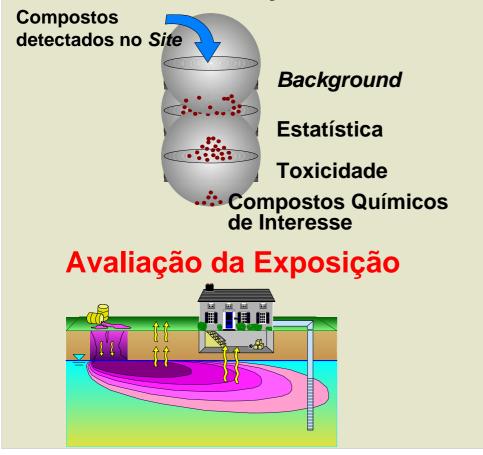
Regulatory Program	Soil Ingestion (mg/kg)	Residential Exposure (mg/kg)	Industrial Exposure (mg/kg)	Inhalation Fugitive Particulate (mg/kg)	Migration to Groundwater DAF 20 (mg/kg)	Migration to Groundwater DAF 1 (mg/kg)
EPA Soil Screening Levels (SSL)	0.4	-	-	750	29	1
EPA Region 9 PRGs	-	0.39	1.6	-	29	1
EPA Region 3 RBC	-	0.43	1.9	-	-	-
CETESB Intervention Values	-	55	150	-	-	-



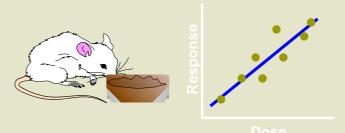
SUMMARY OF FEDERAL STANDARDS AND SCREENING VALUES FOR ARSENIC IN WATER

Water Source (Exposure)	EPA Drinking Water MCL	EPA Region 9 PRGs	EPA Region 3 RBC	CETESB Portaria 518 and Intervention Value
Drinking (Tap) Water (µg/L)	50	0.045	0.045	10
Agua Subterranea (μg/L)	-	-	-	5

WHY SO MANY PROGRAMS?



Delivering sustainable solutions in a more competitive world


Page 20 February 2003

MANY INPUT VARIABLES IN **CALCULATION PROCESS**

Coleta e Avaliação de Dados

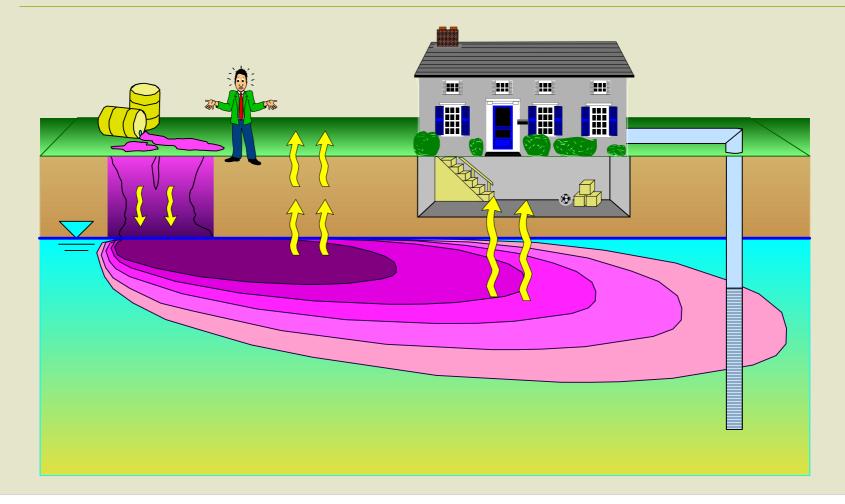
Avaliação da Toxicidade

Caracterização do Risco

Exposição x Toxicidade

USEPA, 1989 – HHEM Part A – EPA/540/1-89/002

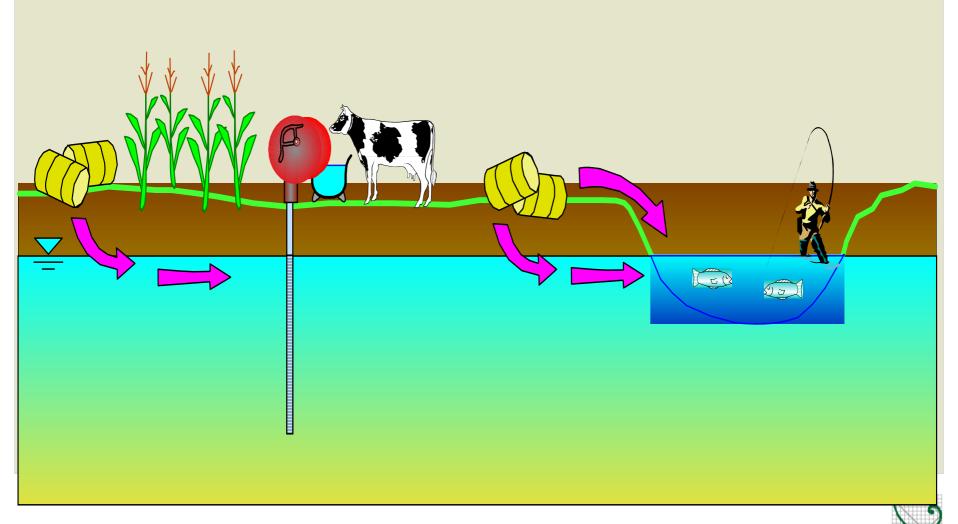
Page 2


FORMAL RISK ASSESSMENT STEPS (USEPA,1989)

- 1. Collect and evaluate data (determine compounds of concern)
- 2. Exposure assessment (Identify potential receptors, exposure point concentrations, and intakes)
- **3. Toxicity assessment** (rely on regulatory databases)
- Calculation of risk values carcinogenic and noncarcinogenic (combines chemicals, exposures and toxicities)
- **5.** Use process to calculate risk-based cleanup values

February 2003

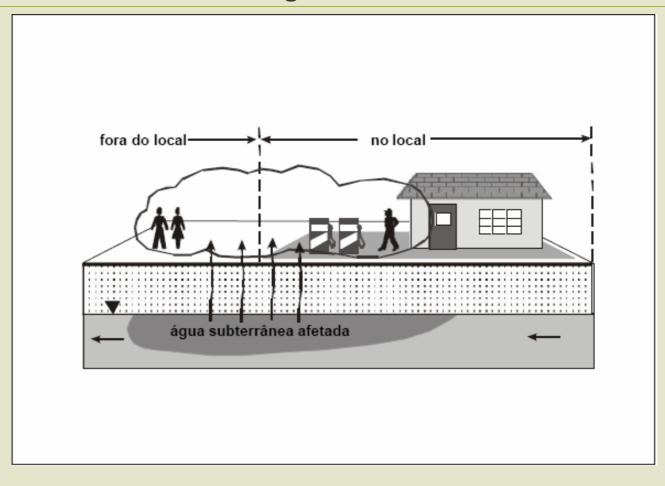
WHAT TYPES OF EXPOSURE EXIST ?



Delivering sustainable solutions in a more competitive world

Page 23 February 2003

WHAT TYPES OF EXPOSURE EXIST ?


Delivering sustainable solutions in a more competitive world

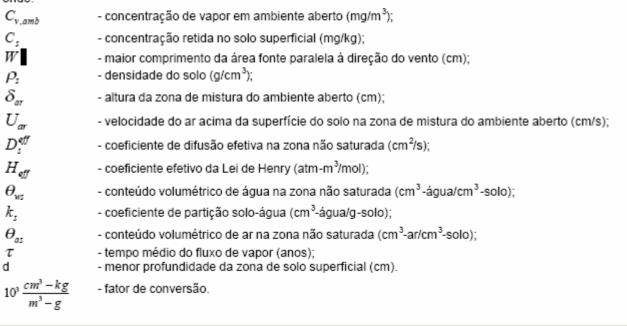
Page 24 February 2003

ERM

POINT OF EXPOSURE CALCULATION

Model - Volatilization from groundwater to outdoor air

POINT OF EXPOSURE CALCULATION


Model – Volatilization from groundwater to outdoor air

$$VF_{ss,omb}\left[\frac{\left(mg/m^{3}-ar\right)}{\left(mg/kg-solo\right)}\right] = \frac{C_{v,omb}}{C_{s}} = \frac{2W\rho_{s}}{U_{or}\times\delta_{or}}\sqrt{\frac{D_{s}^{eff}\times H_{eff}}{\pi\left(\theta_{ws}+k_{s}\rho_{s}+H_{eff}\theta_{os}\right)\tau}} \times 10^{3}\frac{cm^{3}-kg}{m^{3}-g}$$

ou

$$VF_{u,amb}\left[\frac{\left(mg/m^{3}-ar\right)}{\left(mg/kg-solo\right)}\right] = \frac{C_{v,amb}}{C_{s}} = \frac{W\rho_{s}d}{U_{ar}\delta_{ar}} \times 10^{3}\frac{cm^{3}-kg}{m^{3}-g}$$

onde:

Page 26

February 2003

General Equation for Chemical Intake (Portuguese definitions)

		$I = C \times \frac{IR \times EF \times ED}{BW \times AT}$
1	mg/kg-dia	Ingresso ou quantidade de contaminante que ingressa no
		organismo humano por um Caminho de Exposição
С	mg/L ou mg/kg	Concentração do contaminante no meio enfocado
IR	L/dia ou kg/dia	Taxa de contato com o meio enfocado
EF	dias/ano	Freqüência de Exposição
ED	Ano	Duração da Exposição
BW	kg	Peso Corporal
AT	Dias	Período de Exposição

Page 27

TOXICITY VALUES - EXAMPLE

				-		-				-	ion <mark>t i=IRIS =</mark> =PPRTV c=California EPA n=NCE/ 3uide) sat=Soil Saturation (See User's Guide) r
		тохісіт	ΥV	ALUES							CONTAMINANT
SFo 1/(mg/kg-	·d)	RfDo (mg/kg-d)	1	SFi 1/(mg/kg-	-d)	RfDi (mg/kg-d)		v o c	skin abs. soils	CAS No.	
8.7E-03	i	4.0E-03	i	8.7E-03	r	4.0E-03	r		0.1	30560-19-1	Acephate
				7.7E-03	i	2.6E-03	i	у		75-07-0	Acetaldehyde
		2.0E-02	i			2.0E-02	r		0.1	34256-82-1	Acetochlor
		9.0E-01	i			9.0E-01	r	у		67-64-1	Acetone
		8.0E-04	h			8.0E-04	r		0.1	75-86-5	Acetone cyanohydrin
		1.7E-02	r			1.7E-02	i	у		75-05-8	Acetonitrile
		5.0E-04	i			5.7E-06	i	у		107-02-8	Acrolein
4.5E+00	i	2.0E-04	i	4.5E+00	i	2.0E-04	r		0.1	79-06-1	Acrylamide
		5.0E-01	i			2.9E-04	i		0.1	79-10-7	Acrylic acid
5.4E-01	i	1.0E-03	h	2.4E-01	i	5.7E-04	i	у		107-13-1	Acrylonitrile
1.0E+00	r			1.0E+00	с			у			"CAL-Modified PRG"
8.1E-02	h	1.0E-02	i	8.0E-02	r	1.0E-02	r		0.1	15972-60-8	Alachlor
		1.5E-01	i			1.5E-01	r		0.1	1596-84-5	Alar
		1.0E-03	i			1.0E-03	r		0.1	116-06-3	Aldicarb
		1.0E-03	i			1.0E-03	r		0.1	1646-88-4	Aldicarb sulfone

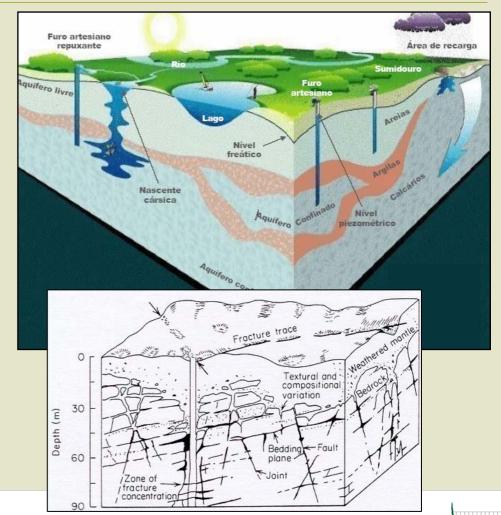
Delivering sustainable solutions in a more competitive world

Page 28 February 2003

GENERAL EQUATIONS FOR CARCINOGENIC RISK AND ACUTE HAZARD QUOTIENT

		$Risco = I_n \times SF$
Risco	-	Risco Carcinogênico
I.	mg/kg-dia	Dose de Ingresso para o Cenário de Exposição "n"
SF	(1/ mg/kg-dia)	Fator de Carcinogenicidade

$$HQ = \frac{I_n}{RfD_i}$$
RfD - Quociente de Perigo não Carcinogênico
I mg/kg-dia Dose de Ingresso para o Cenário de Exposição "n"
RfD mg/kg-dia Dose de Referencia para a Via de Ingresso "i"



Page 29

February 2003

VARIABLES AFFECTING INTERVENTION VALUE OR SCREENING LEVEL DEVELOPMENT

- Geography
- Climate
- Geology/hydrogeology
- Land use/exposure scenarios
- Chemistry properties/ interactions
- Data sufficiency statistics
- Toxicity value resources/ accuracy
- Model input parameters

DETAILED DATA ENTRY – SIMPLE RBCA MODEL

RBCA SITE ASSESSMENT Input Parameter Summary Completed By: Susanne Loebmann Job ID: A5138 Date Completed: 5-abr-w (inclusion) al dan Eal Os anti-Sprome larre Germann inua Ela Adult 70 (1-16 yra) Source zone ate a 305-5 (1-2cm) Chroni Completion ŵ Avenaging time for carcinogens (yr) Length of source come area.camilel to wind NA AT. 1.95-4 AT. $W_{\mu\nu}$ Averaging time for non-carcinogens (yr) 30 255 . Length of source cone area pamilel to GW flow NA. 8W Body weight (kg) 70 15 35 70 U_{dr} Ambient air velocity in mixingzone 2.05-2 ED Exposure duration (yr) 30 10 16 25 . δ_{ab} Air mixing zone height 205-2 Areal particulate emission rate Averaging time for vapor flux (yr) 30 25 P. 6,95-14 Exposure inequency (daystyr) 350 250 150 L., Thickness of a lisched purpose point NA. ETC: Exposure inequancy for dermal exposure 050 250 Surface Soll Column Parameters IR, ingestion rate of water (L/day) 2 1 Value 18, ingestion rate of soil (mg/day) 100 200 100 Capillary zone thickness NA 50 h.,__ 2023 Vadose zone thickne at NA. SA. Skin surface area (denmal) (cm/2) 5800 5800 5500 h, Soil bulk density M Soil to skin adhe ence factor 2. NA. . . ET_{artin} Swimming exposure time (this vent) 12. t... Fraction organic carbon NA $\mathbb{E} V_{\min}$ 12 12 NA Swimming event frequency (eventalyr) 12 ω, Soil total porosity IR_{erin} К, NA Water incestion while selectring (L/hr) 0.05 0.5 Vertical hydraulic conduct/vib SA_{min} Skin surface area for eximming (cm/2) 23000 NI 00 k. Vapor permeability NA IR_{int} ingention rate of figh (kg§r) 0.025 ۰., Depth to groundwates NA с., " Conteminated Job Insolon Auditors 5 Depth to top of a lie cled soil a NA . Depth to base of affected poils NA Complete Exposure Pathways and Receptors Orn-eilte 08-eite 1 Off-eite 2 Thickness of allected solls NA. **L**andar Soll/groundwate right NA Groundwater oH. Groundwater Ingestion Commercial NA NA **aspillery** NA NA foundation NA Soil Leaching to Groundwater Ingestion Volumetric water content NA None NA NA Volumetric air content NA NA NA Applicable Surface Weler Econoure Roules: Swimming Suliding Parameters Realizientia NA mmercia Fish Consumption Buildingy olume is NA. nea rafic NJ N. Ā. Aquatic Life Protection NA Foundation and NIA. NA Xet Foundation partmeter NA NA Colt ER Building air exchange nate NA. NA Direct Ingestion and Dennal Contact Commercial L_{ob} Foundation thickness NA NA z.,, Depth to bottom of foundation slab NA NA Outdoor Air: Foundation crack inaction NA NA 11 Particulates from Surface Solis Commercia NA Indoon/outdoor differential pressus NA NA đ, Volatilization from Solis None NA. NA. Convective air fow through sino NA NA Volatilgation from Groundwates None NA NA woler Persite lene Value Indexes Min Gioundeater mixing zone de offi NA Volatilization from Subsurface Soils NA. None NA NA. Net groundwater infilmation rate Volatilization from Groundwater None NA NA Groundwater Darcy velocity NA. ÷., V..... Gitrumdwater seepage velo dity NA Receptor Dietance from Source Necla Onadia OB. all to 1 Off-site 2 distant. к, Saturated Index. In conductivity NA Grounderster grade nt NA Groundwater receptor (car Soil leading to goundwater receptor NA NA NA (cm) **S**., Width of groundwater source zone NA Outdoor air inihalation a ceptor · 02 NIA. 10.00 (cont) 5. Depth of groundwater source zone NA 0.... Effective ponotity in water bearing unit NA. Target Health Risk Value a vdivi du Oursule Eve Fraction organic carbon in water-bearing unit NA Target Flak (class A&B carcinogens) 1.02-5 pH_{at} Groundwater pH NA. TR. 1.02-6 TR. Target Flak (class C carcinogens) 1.02-5 Blode grad alion considered? NA THO 1,02.+0 1,05+0 Target Hazard Quotient (non-carcinogenic risk) **Modelling Optione** Transport Parameters Weather 1 OF-allie 2 OF-site 1 DECA No. Lateral Groundwater Transport Grounder r incestion Sol Lee Outdoor air volatilization model IN A Longitudinal dispensivity NA NA NA CL. indoor air solatiinaton modal IN6 α, Transverse dispersivity NIA. NIA. NA. Sol leaching model NA Vertical dispersivity NA NA NA. α, Use soil attenuation model (SAM) for leachate? NA. Laters Outdoor Air Transport Soli to Ce linha GW to Q Air diution factor IN6 Transverse dispersion coefficient NA NA NA 3 Geourcheater dilution-attenuation lactor NA. 144 Vertical discertion one Notert NA. NA. Air dispersion factor NA NA Quartesse Water: Parameters i faile i Q., NOTE: NA - Not applicable Starface water ficeerste NA $W_{\mu\nu}$ Width of GW plume at 5W discharge NA. Thickness of GW plume at 5W discharge NA. DP. Groundwater-to-surface water dilution factor NA

1 OF 1

initat.

(om)

(am)

(crm/a)

(orn)

(g/cm*2/s)

(ann)

United

(am)

(am)

(glom⁴0)

61

61

(cm/d)

(cm*2)

(am)

(am)

(ann)

(am)

61

Θ

e)

Unitab

(ani)

Access 128

(am)

(f/m)

(am)

(am)

61

(g/cm/a*2)

(crm*3/at)

Unitat

(cm)

(cm/r)

(cm/d)

km(d)

(cm/d)

61

(ann)

(am)

e)

61

ă

United

(anni)

(am)

(am)

(am)

(am)

init at

(conf/6/at

(orn)

(am)

61

Off-alts 2

waite GW

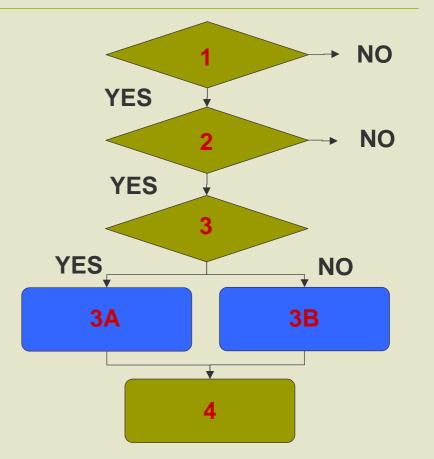
15.8

NA.

NA.

ir inte

NB


NB.

Delivering sustainable solutions in a more competitive world

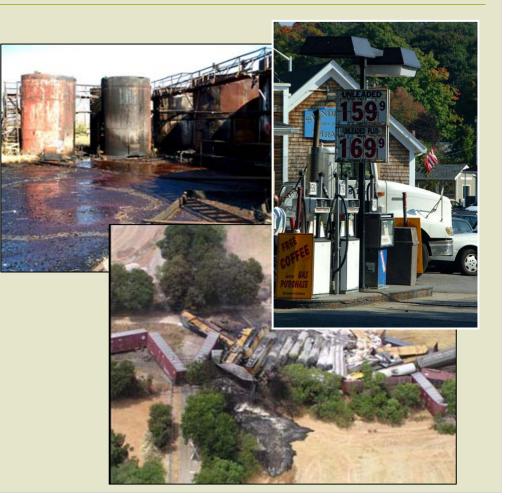
Page 31 February 2003

CONCLUSION: SUMMARY OF PHASED USE OF REGULATORY VALUES

- 1. Do impacts exist above background concentrations?
- 2. Are applicable or relevant screening levels exceeded?
- **3.** Can screening levels serve as appropriate cleanup levels?
 - A. Yes Implement cleanup to existing standards
 - B. No Develop site-specific cleanup goals
- 4. Assure sufficient data during cleanup to warranty effective remedy

GENERAL SITE REMEDIATION PROCESS CONSULTING PRACTICE - EXAMPLES

CHARACTIZATION

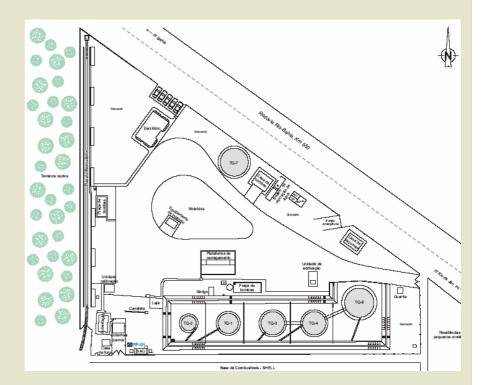

- Identification
- Delineation

• **RISK CHARACTERIZATION**

- Human Health
- Environmental Receptors

REMEDIAL ACTION

- Remedial Action Objectives
- Remedial Design
- Remedy Implementation
- Operation & Management

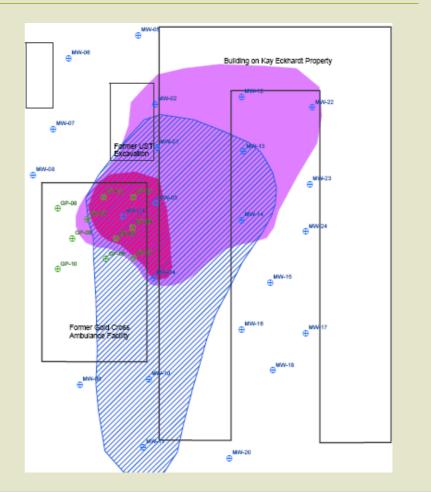


Page 33

February 2003

EXAMPLE 1 - USE OF INTERVENTION VALUES FOR SCREENING PURPOSES

- Phase II ESA property transaction (Brazil)
- Ten borings and wells for sampling
- Soil showed pyrene and chrysene at one location – below agency intervention values
- Groundwater showed select VOCs & PAHs at low concentrations – below agency intervention values
- Site suitable for sale with no remedial action



Page 34

February 2003

EXAMPLE 2 - USE OF SCREENING VALUES FOR REMEDIATION PURPOSES

- Leaking underground storage tank site (USA)
- Gasoline VOCs above State "Initial Screening Levels (ISLs)" in soil and groundwater
- Remediation to achieve ISLs rather than risk-based levels for site
- Target ISLs include 1 mg/L TPH, 0.005 mg/L benzene, and 0.2 mg/L **MTBF**
- Owner proposing MNA; adjacent land owner litigating for active remediation

Page 35

EXAMPLE 3 - USE OF SCREENING VALUES FOR REMEDIATION PURPOSES

- Remediation of canal sediment via dredging (USA)
- Two meters of sediment containing TPH and oil & grease
- Cleanup levels were State LUST Program guidelines: 100 mg/kg TPH and 300 mg/kg O&G
- Quality assurance required visual confirmation at 100 foot (30 m) intervals
- Laboratory analysis every 2,000 feet (670 m)

EXAMPLE 4 - DEVELOPMENT OF SITE-SPECIFIC REMEDIATION GOALS FOR GROUNDWATER

- Brazil industrial site impacted by chlorinated solvents in shallow and deep groundwater
- PCE and breakdown products exceed intervention values
- No current groundwater ingestion or direct contact with soil or groundwater
- Site-specific risk assessment performed; showed unacceptable risks to "site workers" and "construction workers"
- Potential site-specific cleanup levels calculated using risk assessment formulas with results 2 to 3 orders higher than agency intervention values
- Remediation planning underway difficult to predict if risk-based targets can be achieved

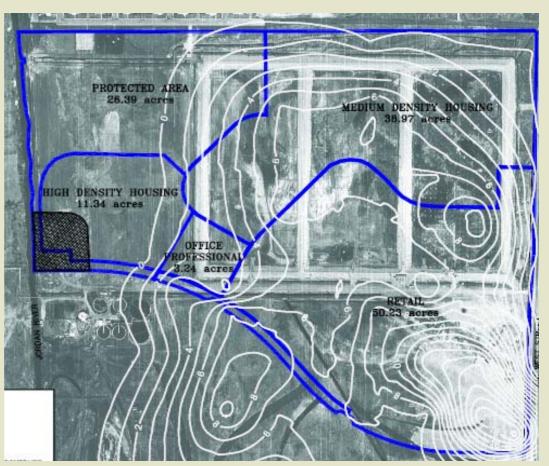
Page 37

February 2003

EXAMPLE 4 - DEVELOPMENT OF SITE-SPECIFIC REMEDIATION GOALS FOR GROUNDWATER

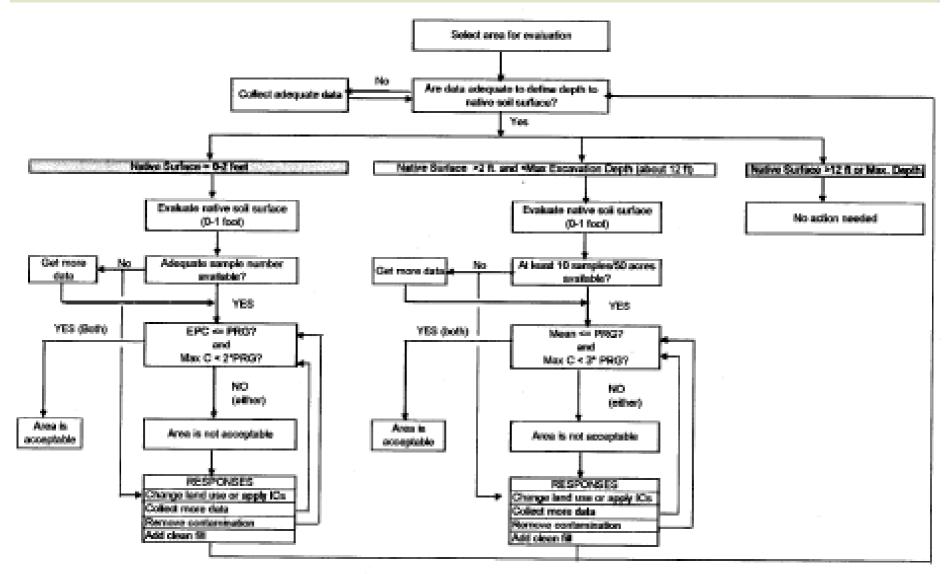
	Groundwater										
Compounds of Concern (COC)	Risk/HI > Threshold in On-Site Groundwater? ¹	Remedial Goals ² (Site Worker) ³	Remedial Goals ² (Construction Worker) ³	Concentration Range in Source Area ⁵							
Ē		(mg/L)	(mg/L)	(mg/L)							
Ammonia	No										
Arsenic	No										
Iron	No										
Manganese	No										
Chloroform	Yes	18.7	18.4	9 to 24							
Chloroethane	No										
Vinyl Chloride (adults)	Yes	20.4	4.6	1.3 to 6.8							
1,1-Dichloroethane	No										
1,1-Dichloroethene	No										
cis-1,2-Dichloroethene	Yes		12.4	18 to 105							
trans-1,2-Dichloroethene	No										
1,1,1-Trichloroethane	No										
Trichloroethene	Yes	2.4	0.360	2.7 to 7.9							
Tetrachloroethene	Yes	30.8	4.4	10 to 85							

EXAMPLE 5 - USE OF SITE-SPECIFIC REMEDIATION GOALS FOR SOIL


- Brownfield redevelopment of Superfund site (USA)
- Plan for mixed commercial and residential use
- EPA provided risk-based "Decision Framework" for potential land uses
- Some soil contained Pb and As above residential targets (commercial use allowed w/o remediation)

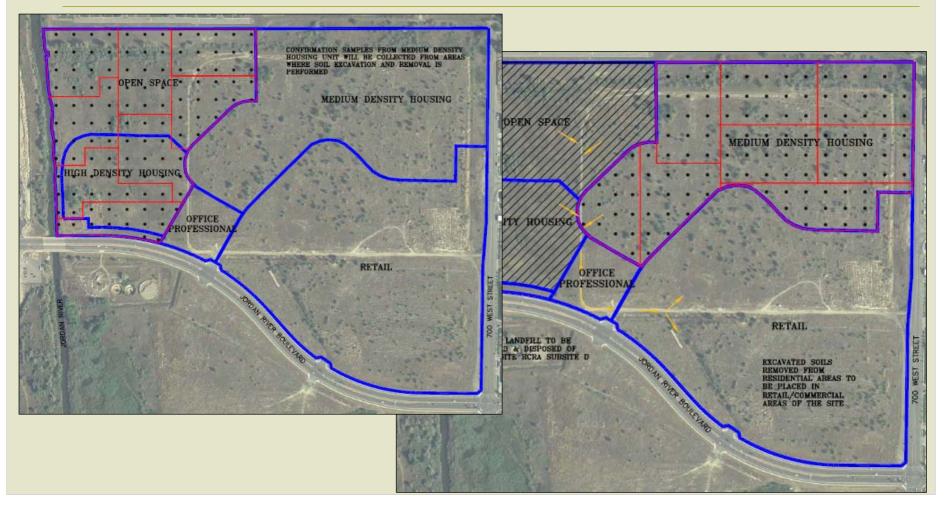
EXAMPLE 5 - USE OF SITE-SPECIFIC REMEDIATION GOALS FOR SOIL

- Plan for affected soil removal from residential areas to commercial areas
- Cleanup complicated by historical (clean) fill over impacted soil
- Quality assurance during removal was key to successful remediation
- Remediation completed 2006 – development in progress



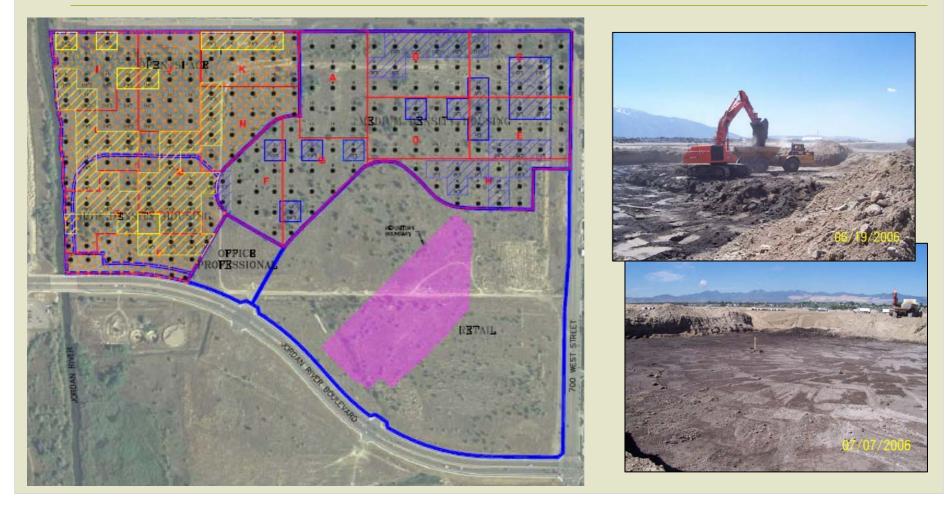
Page 40

February 2003

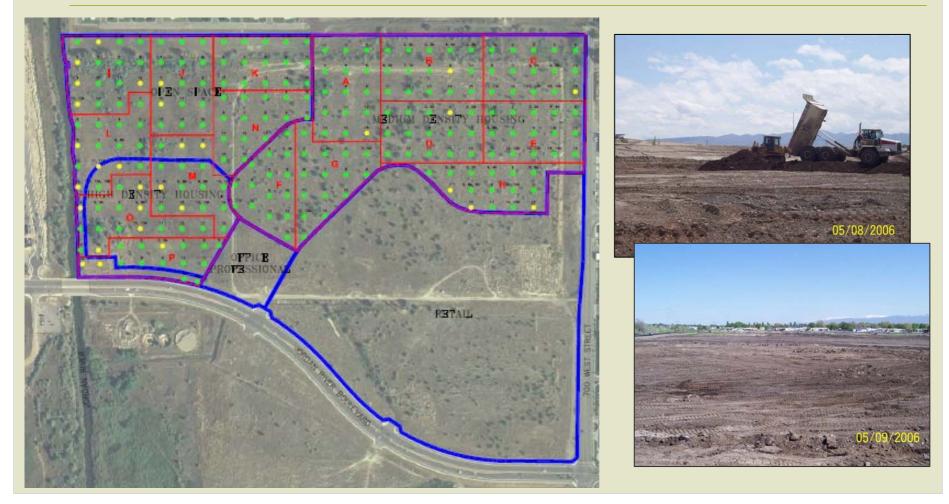

EXAMPLE 5 – EPA DECISION FRAMEWORK

PRGs (no cover soil): As 73 mg/kg and Pb 650 mg/kg

EXAMPLE 5 – PLAN FOR SELECTIVE SOIL REMOVAL TO ENABLE REDEVELOPMENT



Delivering sustainable solutions in a more competitive world


Page 42 February 2003

EXAMPLE 5 – MAP OF AREAS REQUIRING SOIL REMOVAL BASED ON ARSENIC & LEAD

EXAMPLE 5 – MAP AFTER REMEDIATION GOALS WERE ACHIEVED

